功能描述:
ImageNet LSVRC是一個圖片分類的比賽,其訓練集包括127W+張圖片,驗證集有5W張圖片,測試集有15W張圖片。本文截取2010年Alex Krizhevsky的CNN結構進行說明,該結構在2010年取得冠軍,top-5錯誤率為15.3%。值得一提的是,在今年的ImageNet LSVRC比賽中,取得冠軍的GoogNet已經達到了top-5錯誤率6.67%。可見,深度學習的提升空間還很巨大。
下圖即為Alex的CNN結構圖。需要注意的是,該模型采用了2-GPU并行結構,即第1、2、4、5卷積層都是將模型參數分為2部分進行訓練的。在這里,更進一步,并行結構分為數據并行與模型并行。數據并行是指在不同的GPU上,模型結構相同,但將訓練數據進行切分,分別訓練得到不同的模型,然后再將模型進行融合。而模型并行則是,將若干層的模型參數進行切分,不同的GPU上使用相同的數據進行訓練,得到的結果直接連接作為下一層的輸入。

|