功能描述:
聯(lián)系:highspeedlogic
QQ :1224848052
微信:HuangL1121
郵箱:1224848052@qq.com
網(wǎng)站:http://www.mat7lab.com/
網(wǎng)站:http://www.hslogic.com/
微信掃一掃:
function [patterns, targets, label] = k_means(train_patterns, train_targets, Nmu, plot_on)
%Reduce the number of data points using the k-means algorithm
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
% Nmu - Number of output data points
% plot_on - Plot stages of the algorithm
%
%Outputs
% patterns - New patterns
% targets - New targets
% label - The labels given for each of the original patterns
if (nargin < 4),
plot_on = 0;
end
[D,L] = size(train_patterns);
dist = zeros(Nmu,L);
label = zeros(1,L);
%Initialize the mu's
mu = randn(D,Nmu);
mu = sqrtm(cov(train_patterns',1))*mu + mean(train_patterns')'*ones(1,Nmu);
old_mu = zeros(D,Nmu);
switch Nmu,
case 0,
mu = [];
label = [];
case 1,
mu = mean(train_patterns')';
label = ones(1,L);
otherwise
while (sum(sum(abs(mu - old_mu) > 1e-5)) > 0),
old_mu = mu;
%Classify all the patterns to one of the mu's
for i = 1:Nmu,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
%Label the points
[m,label] = min(dist);
%Recompute the mu's
for i = 1:Nmu,
mu(:,i) = mean(train_patterns(:,find(label == i))')';
end
%Plot the centers during the process
plot_process(mu, plot_on)
end
end
%Classify the patterns
targets = zeros(1,Nmu);
Uc = unique(train_targets);
for i = 1:Nmu,
if (length(unique(train_targets(:,find(label == i)))) == 1)
targets(i) = unique(train_targets(:,find(label == i)));
else
N = hist(train_targets(:,find(label == i)), Uc);
if (~isempty(N))
[m, max_l] = max(N);
targets(i) = Uc(max_l);
end
end
end
patterns = mu;
|