功能描述:
傳統的跟蹤算法大多從物體的外觀出發,只能在線學習,從當前的視頻中在線抓取數據進行學習跟蹤的算法,如:TLD、Struck、KCF,這類算法必須足夠簡單才行,否則耗時嚴重。當然現在也有人使用卷積網絡進行離線訓練,在線跟蹤,但是當跟蹤目標未知時,需要利用隨機梯度下降法(SGD)在線微調網絡權重,從而使得速度下降,做不到實時跟蹤。
綜上,淺層學習方式,如相關濾波,利用網絡內部參數作為特征,這樣不能充分發揮“端對端”的優勢。而利用SGD微調多層網絡參數的方式無法實時跟蹤。
近期的研究工作有:
1.利用RNN網絡進行訓練,通過預測目標在各幀中的位置來跟蹤,同時加入了可區分的“注意力機制”。雖然該方法目前無法在現有的標準測試集上取得顯著的結果,但是有足夠的潛力;
2.利用粒子濾波的方式,通過訓練好的距離矩陣比較當前幀與第一幀的區別,其中距離矩陣是利用了首先玻爾茲曼機(RBM)和隨機點的方式訓練所得。此方法與本文中的方法差異太大,因此沒有使用該方法。
3.離線預訓練+在線微調方式,其中SO-DLT和MDNet均離線訓練了一個相似性檢測的卷積網絡,并在線使用SGD算法進行微調。利用這種方法的Deep SRDCF和 FCNT均取得了很好的結果,但是在速度上依舊不行。
4.GOTURN算法也采用了YCNN的結構,但是該算法無法控制下一幀的變換形式,不具有變換的內在不變性,除非樣本集包含所有種類所有位置的變換。并且不能自適應調節搜索區域的大小。
5.SINT(Siamese Instance search Tracker)算法從名字上看像是從Instance級別上去搜索,它采用非全卷積的結構,在圖像中均勻分布著類似Struck算法中的圓形區域,然后利用光流和標記框的修正來提升效果,并通過ROI區域來提升速度,最終達到了2fps。
這里介紹下, 如果搭建基于matlab的深度學習神經網絡的GPU仿真搭建。
1.版本組合:Win7+Matlab R2015b+CUDA7.5+vs2013
CUDA7.5下載地址為:http://developer.download.nvidia.com/compute/cuda/7.5/Prod
/local_installers/cuda_7.5.18_windows.exe
VS2013要專業版。
如下所示:
全部安裝好之后,做如下操作:
2.CPU配置,運行CNN工具箱中的vl_setupnn.m,然后再運行vl_compilenn.m可以完成CPP文件的編譯。
3.編譯成功后,會產生
這些必須在電腦上編譯,否則別人的復制給你,如果配置不一樣,可能會報錯。
4.GPU配置:
安裝cudnn:https://developer.nvidia.com/rdp/cudnn-archive,放到CNN工具箱中的新建local文件夾中,
然后mex -setup下,操作和CPU一樣。
然后執行matlab程序:
vl_setupnn;
vl_compilenn('enableGpu', true,'cudaRoot', 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5','cudaMethod', 'nvcc', 'enableCudnn', 'true','cudnnRoot',
'E:\A_2016_FPGA_Test\FC_tracking\A_FC\matconvnet-1.0-beta20\local\cudnn');
紅色部分為自己的安裝路徑,不要有中文。
目標跟蹤相關資源:
Visual Trackers
-
ECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking." CVPR (2017). [paper] [project] [github]
-
CFNet: Jack Valmadre, Luca Bertinetto, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr. "End-to-end representation learning for Correlation Filter based tracking." CVPR (2017). [paper] [project] [github]
-
CACF: Matthias Mueller, Neil Smith, Bernard Ghanem. "Context-Aware Correlation Filter Tracking." CVPR (2017 oral). [paper] [project] [code]
-
RaF: Le Zhang, Jagannadan Varadarajan, Ponnuthurai Nagaratnam Suganthan, Narendra Ahuja and Pierre Moulin "Robust Visual Tracking Using Oblique Random Forests." CVPR (2017). [paper] [project] [code]
-
MCPF: Tianzhu Zhang, Changsheng Xu, Ming-Hsuan Yang. "Multi-task Correlation Particle Filter for Robust Visual Tracking ." CVPR (2017). [paper] [project] [code]
-
ACFN: Jongwon Choi, Hyung Jin Chang, Sangdoo Yun, Tobias Fischer, Yiannis Demiris, and Jin Young Choi. "Attentional Correlation Filter Network for Adaptive Visual Tracking." CVPR (2017) [paper] [project] [test code)] [training code]
-
LMCF: Mengmeng Wang, Yong Liu, Zeyi Huang. "Large Margin Object Tracking with Circulant Feature Maps." CVPR (2017). [paper] [zhihu]
-
ADNet: Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, Jin Young Choi. "Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning ." CVPR (2017). [paper] [project]
-
CSR-DCF: Alan Lukežič, Tomáš Vojíř, Luka Čehovin, Jiří Matas, Matej Kristan. "Discriminative Correlation Filter with Channel and Spatial Reliability." CVPR (2017). [paper]
-
BACF: Hamed Kiani Galoogahi, Ashton Fagg, Simon Lucey. "Learning Background-Aware Correlation Filters for Visual Tracking." CVPR (2017). [paper]
-
Bohyung Han, Jack Sim, Hartwig Adam "BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks." CVPR (2017).
-
SANet: Heng Fan, Haibin Ling. "SANet: Structure-Aware Network for Visual Tracking." CVPRW (2017). [paper] [project] [code]
-
DNT: Zhizhen Chi, Hongyang Li, Huchuan Lu, Ming-Hsuan Yang. "Dual Deep Network for Visual Tracking." TIP (2017). [paper]
-
DRT: Junyu Gao, Tianzhu Zhang, Xiaoshan Yang, Changsheng Xu. "Deep Relative Tracking." TIP (2017). [paper]
-
BIT: Bolun Cai, Xiangmin Xu, Xiaofen Xing, Kui Jia, Jie Miao, Dacheng Tao. "BIT: Biologically Inspired Tracker." TIP (2016). [paper] [project] [github]
-
SiameseFC: Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H.S. Torr. "Fully-Convolutional Siamese Networks for Object Tracking." ECCV workshop (2016). [paper] [project] [github]
-
GOTURN: David Held, Sebastian Thrun, Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." ECCV (2016). [paper] [project] [github]
-
C-COT: Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016). [paper] [project] [github]
-
CF+AT: Adel Bibi, Matthias Mueller, and Bernard Ghanem. "Target Response Adaptation for Correlation Filter Tracking." ECCV (2016). [paper] [project]
-
MDNet: Nam, Hyeonseob, and Bohyung Han. "Learning Multi-Domain Convolutional Neural Networks for Visual Tracking." CVPR (2016). [paper] [VOT_presentation] [project] [github]
-
SINT: Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders. "Siamese Instance Search for Tracking." CVPR (2016). [paper] [project]
-
SCT: Jongwon Choi, Hyung Jin Chang, Jiyeoup Jeong, Yiannis Demiris, and Jin Young Choi. "Visual Tracking Using Attention-Modulated Disintegration and Integration." CVPR (2016). [paper] [project]
-
STCT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially Training Convolutional Networks for Visual Tracking." CVPR (2016). [paper] [github]
-
SRDCFdecon: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking." CVPR (2016). [paper] [project]
-
HDT: Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qingming Huang, Jongwoo Lim, Ming-Hsuan Yang. "Hedged Deep Tracking." CVPR (2016). [paper] [project]
-
Staple: Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, Philip H.S. Torr. "Staple: Complementary Learners for Real-Time Tracking." CVPR (2016). [paper] [project] [github]
-
DLSSVM: Jifeng Ning, Jimei Yang, Shaojie Jiang, Lei Zhang and Ming-Hsuan Yang. "Object Tracking via Dual Linear Structured SVM and Explicit Feature Map." CVPR (2016). [paper] [code] [project]
-
CNT: Kaihua Zhang, Qingshan Liu, Yi Wu, Minghsuan Yang. "Robust Visual Tracking via Convolutional Networks Without Training." TIP (2016). [paper] [code]
-
DeepSRDCF: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Convolutional Features for Correlation Filter Based Visual Tracking." ICCV workshop (2015). [paper] [project]
-
SRDCF: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Learning Spatially Regularized Correlation Filters for Visual Tracking." ICCV (2015). [paper] [project]
-
CNN-SVM: Seunghoon Hong, Tackgeun You, Suha Kwak and Bohyung Han. "Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network ." ICML (2015) [paper] [project]
-
CF2: Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang. "Hierarchical Convolutional Features for Visual Tracking." ICCV (2015) [paper] [project] [github]
-
FCNT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "Visual Tracking with Fully Convolutional Networks." ICCV (2015). [paper] [project] [github]
-
LCT: Chao Ma, Xiaokang Yang, Chongyang Zhang, Ming-Hsuan Yang. "Long-term Correlation Tracking." CVPR (2015). [paper] [project] [github]
-
RPT: Yang Li, Jianke Zhu and Steven C.H. Hoi. "Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches." CVPR (2015). [paper] [github]
-
CLRST: Tianzhu Zhang, Si Liu, Narendra Ahuja, Ming-Hsuan Yang, Bernard Ghanem.
"Robust Visual Tracking Via Consistent Low-Rank Sparse Learning." IJCV (2015). [paper] [project] [code]
-
DSST: Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan and Michael Felsberg. "Accurate Scale Estimation for Robust Visual Tracking." BMVC (2014). [paper] [PAMI] [project]
-
MEEM: Jianming Zhang, Shugao Ma, and Stan Sclaroff. "MEEM: Robust Tracking via Multiple Experts using Entropy Minimization." ECCV (2014). [paper] [project]
-
TGPR: Jin Gao, Haibin Ling, Weiming Hu, Junliang Xing. "Transfer Learning Based Visual Tracking with Gaussian Process Regression." ECCV (2014). [paper] [project]
-
STC: Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang, David Zhang. "Fast Tracking via Spatio-Temporal Context Learning." ECCV (2014). [paper] [project]
-
SAMF: Yang Li, Jianke Zhu. "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration." ECCV workshop (2014). [paper] [github]
-
KCF: João F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista. "High-Speed Tracking with Kernelized Correlation Filters." TPAMI (2015). [paper] [project]
Others
-
Re3: Daniel Gordon, Ali Farhadi, Dieter Fox. "Re3 : Real-Time Recurrent Regression Networks for Object Tracking." arXiv (2017). [paper] [code]
-
DCFNet: Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2017). [paper] [code]
-
TCNN: Hyeonseob Nam, Mooyeol Baek, Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2016). [paper] [code]
-
RDT: Janghoon Choi, Junseok Kwon, Kyoung Mu Lee. "Visual Tracking by Reinforced Decision Making." arXiv (2017). [paper]
-
MSDAT: Xinyu Wang, Hanxi Li, Yi Li, Fumin Shen, Fatih Porikli . "Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation." arXiv (2017). [paper]
-
RLT: Da Zhang, Hamid Maei, Xin Wang, Yuan-Fang Wang. "Deep Reinforcement Learning for Visual Object Tracking in Videos." arXiv (2017). [paper]
-
SCF: Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, Ming-Hsuan Yang. "Learning Support Correlation Filters for Visual Tracking." arXiv (2016). [paper] [project]
-
DMSRDCF: Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg. "Deep Motion Features for Visual Tracking." ICPR Best Paper (2016). [paper]
-
CRT: Kai Chen, Wenbing Tao. "Convolutional Regression for Visual Tracking." arXiv (2016). [paper]
-
BMR: Kaihua Zhang, Qingshan Liu, and Ming-Hsuan Yang. "Visual Tracking via Boolean Map Representations." arXiv (2016). [paper]
-
YCNN: Kai Chen, Wenbing Tao. "Once for All: a Two-flow Convolutional Neural Network for Visual Tracking." arXiv (2016). [paper]
-
Learnet: Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi. "Learning feed-forward one-shot learners." NIPS (2016). [paper]
-
ROLO: Guanghan Ning, Zhi Zhang, Chen Huang, Zhihai He, Xiaobo Ren, Haohong Wang. "Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking." arXiv (2016). [paper] [project] [github]
-
Yao Sui, Ziming Zhang, Guanghui Wang, Yafei Tang, Li Zhang. "Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning." ECCV (2016). [paper] [project]
-
Yao Sui, Guanghui Wang, Yafei Tang, Li Zhang. "Tracking Completion." ECCV (2016). [paper] [project]
-
EBT: Gao Zhu, Fatih Porikli, and Hongdong Li. "Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals." CVPR (2016). [paper] [exe]
-
RATM: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic. "RATM: Recurrent Attentive Tracking Model." arXiv (2015). [paper] [github]
-
DAT: Horst Possegger, Thomas Mauthner, and Horst Bischof. "In Defense of Color-based Model-free Tracking." CVPR (2015). [paper] [project] [code]
-
RAJSSC: Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi, Qiang Wang, Weiming Hu. "Joint Scale-Spatial Correlation Tracking with Adaptive Rotation Estimation." ICCV workshop (2015). [paper] [poster]
-
SO-DLT: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung. "Transferring Rich Feature Hierarchies for Robust Visual Tracking." arXiv (2015). [paper] [code]
-
DLT: Naiyan Wang and Dit-Yan Yeung. "Learning A Deep Compact Image Representation for Visual Tracking." NIPS (2013). [paper] [project] [code]
-
Naiyan Wang, Jianping Shi, Dit-Yan Yeung and Jiaya Jia. "Understanding and Diagnosing Visual Tracking Systems." ICCV (2015). [paper] [project] [code]
-
Dataset-MoBe2016: Luka Čehovin, Alan Lukežič, Aleš Leonardis, Matej Kristan. "Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking." arXiv (2016). [paper]
-
Dataset-UAV123: Matthias Mueller, Neil Smith and Bernard Ghanem. "A Benchmark and Simulator for UAV Tracking." ECCV (2016) [paper] [project] [dataset]
-
Dataset-TColor-128: Pengpeng Liang, Erik Blasch, Haibin Ling. "Encoding color information for visual tracking: Algorithms and benchmark." TIP (2015) [paper] [project] [dataset]
-
Dataset-NUS-PRO: Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. "NUS-PRO: A New Visual Tracking Challenge." PAMI (2015) [paper] [project] [Data_360(code:bf28)] [Data_baidu]] [View_360(code:515a)] [View_baidu]]
-
Dataset-PTB: Shuran Song and Jianxiong Xiao. "Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines." ICCV (2013) [paper] [project] [5 validation] [95 evaluation]
-
Dataset-ALOV300+: Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, Mubarak Shah. "Visual Tracking: An Experimental Survey." PAMI (2014) [paper] [project] Mirror Link:ALOV300++ Dataset Mirror Link:ALOV300++ Groundtruth
-
Dataset-DTB70: Siyi Li, Dit-Yan Yeung. "Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models." AAAI (2017) [paper] [project] [dataset]
-
Dataset-VOT: [project]
[VOT13_paper_ICCV]The Visual Object Tracking VOT2013 challenge results
[VOT14_paper_ECCV]The Visual Object Tracking VOT2014 challenge results
[VOT15_paper_ICCV]The Visual Object Tracking VOT2015 challenge results
[VOT16_paper_ECCV]The Visual Object Tracking VOT2016 challenge results
聯系:highspeedlogic
QQ :1224848052
微信:HuangL1121
郵箱:1224848052@qq.com
網站:http://www.mat7lab.com/
網站:http://www.hslogic.com/
微信掃一掃:
|